Kinetic Study of Aroxyl Radical Scavenging and α-Tocopheroxyl Regeneration Rates of Pyrroloquinolinequinol (PQQH_{2}, a Reduced Form of Pyrroloquinolinequinone) in Dimethyl Sulfoxide Solution: Finding of Synergistic Effect on the Reaction Rate due to the Coexistence of α-Tocopherol and PQQH_{2}

Aya Ouchi,,$^{,}{ }^{\dagger}$ Kazuto Ikemoto, ${ }^{\dagger}$ Masahiko Nakano, ${ }^{\dagger}$ Shin-ichi Nagaoka, ${ }^{\dagger}$ and Kazuo Mukai ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
${ }^{*}$ Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata 950-3112, Japan

Abstract

Measurements of aroxyl radical (ArO•)-scavenging rate constants ($k_{\mathrm{s}}^{\mathrm{AOH}}$) of antioxidants (AOHs: pyrroloquinolinequinol $\left(\mathrm{PQQH}_{2}\right), \alpha$-tocopherol (α-TocH), ubiquinol-10 $\left(\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$, epicatechin, epigallocatechin, epigallocatechin gallate, and caffeic acid) were performed in dimethyl sulfoxide (DMSO) solution, using stopped-flow spectrophotometry. The k_{s}^{AOH} values were measured not only for each AOH but also for the mixtures of two AOHs ((i) α - TocH and PQQH_{2} and (ii) α-TocH and $\mathrm{UQ}_{0} \mathrm{H}_{2}$). A notable synergistic effect that the $k_{\mathrm{s}}^{\mathrm{AOH}}$ values increase 1.72, 2.42, and 2.50 times for α - $\mathrm{TocH}, \mathrm{PQQH}{ }_{2}$, and $\mathrm{UQ}_{0} \mathrm{H}_{2}$, respectively, was observed for the solutions including two kinds of AOHs . Measurements of the regeneration rates of α-tocopheroxyl radical (α-Toc*) to α-TocH by PQQH_{2} and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ were performed in DMSO, using double-mixing stopped-flow spectrophotometry. Second-order rate constants $\left(k_{\mathrm{r}}\right)$ obtained for PQQH_{2} and $\mathrm{UQ}_{0} \mathrm{H}_{2}$ were 1.08×10^{5} and 3.57 $\times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, respectively, indicating that the k_{r} value of PQQH_{2} is 3.0 times larger than that of $\mathrm{UQ}_{10} \mathrm{H}_{2}$. It has been clarified that PQQH_{2} and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ having two HO groups within a molecule may rapidly regenerate two molecules of α-Toc* to α-TocH. The result indicates that the prooxidant effect of α-Toc ${ }^{\circ}$ is suppressed by the coexistence of PQQH_{2} or $\mathrm{UQ}_{10} \mathrm{H}_{2}$. KEYWORDS: free radicals, pyrroloquinolinequinone, pyrroloquinolinequinol, vitamin E, ubiquinol-10, antioxidant activity, reaction rate, stopped-flow spectrophotometry, coexistence of antioxidants, synergistic effect

INTRODUCTION

Pyrroloquinolinequinone (PQQ) is a water-soluble quinone compound first identified as a a cofactor of alcohol- and glucose-dehydrogenases in bacteria. ${ }^{1,2} \mathrm{PQQ}$ has been receiving much attention in recent years, owing to its several interesting physiological functions. ${ }^{3,4} \mathrm{PQQ}$ is regarded to be a nutritionally important growth factor, because PQQ -deficient diets cause impaired growth, immunological defects, and decreased fertility in mice. ${ }^{5} \mathrm{PQQ}$ is related to mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC- 1α expression. ${ }^{6,7}$ Moreover, PQQ is related to regeneration of peripheral and central nerves. In in vitro experiments, PQQ enhances nerve growth factor, one of the neurotrophic factors responsible for the maintenance and development of peripheral nerves. ${ }^{8}$ Regeneration of transected sciatic nerve in an in vivo rat model has been demonstrated. ${ }^{9}$ It has been suggested that PQQ protects against secondary damage by attenuating inducible nitric oxide synthase (iNOS) expression following a primary physiological injury to spinal cord. ${ }^{10}$ A small amount of PQQ has been found not only in microorganisms but also in human and rat organs or tissues, especially in the highest quantity in human milk. ${ }^{11,12}$ An additional small amount of PQQ is also found in daily foods and beverages. ${ }^{13,14}$

Previous studies demonstrated that the reduced form of $\mathrm{PQQ}\left(\mathrm{PQQH}_{2}\right.$ (pyrroloquinolinequinol), see Figure 1) exhibits antioxidative capacity in in vitro examinations. ${ }^{5,16}$ We found
that PQQNa_{2} (disodium salt of PQQ) is easily reduced to PQQH_{2}, by reacting PQQNa_{2} with glutathione and cysteine in buffer solution (pH 7.4) under nitrogen atmosphere. ${ }^{17}$ This result suggests that PQQ exists as a reduced form throughout the cell and plays a role as an antioxidant. In experiments using cultured cells, it was reported that PQQ prevents oxidative stress-induced neuronal death. ${ }^{18,19}$ Moreover, marked decreases in ischemia damage are found in in vivo models such as cardiovascular or cerebral ischemia models. ${ }^{20,21}$ Furthermore, it was reported that PQQ prevents cognitive deficit caused by oxidative stress in rats. ${ }^{2,23}$

Lipid peroxyl radical (LOO^{\bullet}) and singlet oxygen $\left({ }^{1} \mathrm{O}_{2}\right)$ are well-known as two representative reactive oxygen species generated in biological systems. In previous work, a kinetic study of the aroxyl radical (ArO^{\bullet})-scavenging activity of PQQH_{2} and water-soluble antioxidants (AOHs) (such as vitamin C (Vit C), uric acid (UA), cysteine, and glutathione) was performed in $5.0 \mathrm{wt} \%$ Triton X-100 micellar solution (pH 7.4) using stopped-flow spectrophotometry (see reaction 1). ${ }^{17}$ A stable aroxyl radical (ArO ${ }^{\bullet}$) (2,6-di-tert-butyl-4-(4'methoxyphenyl)phenoxyl) (see Figure 1) was used as a model of LOO^{\bullet} radical, as described in previous studies. ${ }^{24-26}$

[^0]

PQQ

PQQH_{2}
(C)

α-TocH
(D)

α-Toc \cdot
(E)

$\mathrm{UQ}_{10} \mathrm{H}_{2}$
(F)

ArO•

Figure 1. Molecular structures of pyrroloquinolinequinone (PQQ), pyrroloquinolinequinol $\left(\mathrm{PQQH}_{2}\right), \alpha$-tocopherol (α-TocH), α-tocopheroxyl radical $\left(\alpha\right.$-Toc $\left.{ }^{\circ}\right)$, ubiquinol-10 $\left(\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$, and aroxyl radical (ArO^{\bullet}).

The second-order rate constants $\left(k_{s}\right)$ for the reaction of ArO• with PQQH_{2} was found to be 7.4 times larger than that of Vit C, which is well-known as the most active water-soluble AOH.

$$
\begin{equation*}
\mathrm{ArO}^{\bullet}+\mathrm{PQQH}_{2} \xrightarrow{k_{s}} \mathrm{ArOH}+\mathrm{PQQH}^{\bullet} \tag{1}
\end{equation*}
$$

Furthermore, a kinetic study of the quenching reaction of ${ }^{1} \mathrm{O}_{2}$ with $\mathrm{PQQH}_{2}, \mathrm{PQQNa}_{2}$, and seven natural AOHs (Vit C, UA, epicatechin (EC), epigallocatechin (EGC), α-tocopherol $\left(\alpha\right.$-TocH), ubiquinol-10 $\left(\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$, and β-carotene (β-Car)) (reaction 2) has been performed in $5.0 \mathrm{wt} \%$ Triton X-100 micellar solution (pH 7.4), indicating that PQQH_{2} shows high ${ }^{1} \mathrm{O}_{2}$-quenching activity. ${ }^{27}$

$$
\begin{equation*}
{ }^{1} \mathrm{O}_{2}+\mathrm{PQQH}_{2} \xrightarrow{k_{\mathrm{Q}}}{ }^{3} \mathrm{O}_{2}+\mathrm{PQQH}_{2} \tag{2}
\end{equation*}
$$

These results suggest that PQQH_{2} may contribute to the protection of oxidative damage in biological systems by scavenging free radicals and quenching ${ }^{1} \mathrm{O}_{2}$.

In the present study, measurements of the second-order rate constant $\left(k_{s}\right)$ were performed for reaction of ArO^{\bullet} radical with PQQH_{2} and representative lipid- and water-soluble AOHs (such as α-TocH, $\mathrm{UQ}_{10} \mathrm{H}_{2}$, three catechins, and caffeic acid (CA); reaction 1) in dimethyl sulfoxide (DMSO) solution at 25 ${ }^{\circ} \mathrm{C}$ using stopped-flow spectrophotometry. Measurements of the k_{s} value were also performed for the solutions including two kinds of AOHs ((i) α-TocH and PQQH_{2} and (ii) α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$), in order to investigate the synergistic effect of AOHs on the ArO^{\bullet} radical-scavenging rate. Furthermore, measurements of the rate constant $\left(k_{\mathrm{r}}\right)$ for reactions of α-tocopheroxyl
$\left(\alpha\right.$-Toc $\left.{ }^{\bullet}\right)$ radical with PQQH_{2} and $\mathrm{UQ}_{0} \mathrm{H}_{2}$ (reaction 3) were performed in DMSO solution using double-mixing stoppedflow spectrophotometry.

$$
\begin{equation*}
\alpha-\mathrm{Toc}^{\bullet}+\mathrm{PQQH}_{2} \xrightarrow{k_{r}} \mathrm{ArOH}+\mathrm{PQQH}^{\bullet} \tag{3}
\end{equation*}
$$

MATERIALS AND METHODS

Materials. A brown colored powder sample of PQQH_{2} was supplied from Mitsubishi Gas Chemical Company, Inc. α-Tocopherol (α-TocH) and ubiquinone-10 $\left(\mathrm{UQ}_{10}\right)$ were kindly supplied from Eisai Co. Ltd. and Kaneka Co. Ltd., Japan, respectively. Epicatechin (EC), epigallocatechin (EGC), and epigallocatechin gallate (EGCG) were kindly supplied from Mitsui Norin Co., Ltd., Japan. Caffeic acid (CA) was obtained from Nacalai Tesque, Japan. Ubiquinol-10 $\left(\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$ was prepared by the reduction of UQ_{10} with sodium hydrosulfite in n hexane under a nitrogen atmosphere. ${ }^{26}$ ArO ${ }^{\bullet}$ radical was prepared according to the method of Rieker and Scheffler. ${ }^{28}$

Methods. Measurement of the second-order rate constant $\left(k_{s}\right)$ for the reaction of ArO^{\bullet} with AOH (reaction 1) was performed with a Unisoku single-mixing stopped-flow spectrophotometer (model RSP1000) by mixing equal volumes of DMSO solutions of ArO° and AOH under nitrogen atmosphere. ${ }^{17,24-26}$ The k_{r} values of PQQH_{2} and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ (reaction 3) were measured with a Unisoku double-mixing stopped-flow spectrophotometer (model RSP-1000-03F). The details of measurements were reported in previous studies. ${ }^{29}$ All the measurements were performed at $25.0 \pm 0.5{ }^{\circ} \mathrm{C}$. Experimental errors in the rate constants (k_{s} and k_{r}) were estimated to be about 5% in DMSO solution. Ethanol had been generally used for measurements of the k_{s} and k_{r} values of AOHs in previous studies. However, DMSO was used in the present study, because the solubility of PQQH_{2} is low in ethanol. PQQH_{2} is stable in DMSO solution.

RESULTS

Measurements of the Aroxyl Radical Scavenging Rates (k_{s} (alone)) for PQQH_{2} and Six Natural Antioxidants in DMSO Solution. Measurement of the rate constant $\left(k_{s}\right)$ for reaction of ArO^{\bullet} radical with α-TocH was performed in DMSO solution (reaction 1). By reacting α-TocH with ArO• radical, the absorbance at 380 and 587 nm of the ArO^{\bullet} decreases, and the absorbance at 428 nm of α-Toc ${ }^{\circ}$ radical increases, as shown in Figure 2A. The scavenging rate of ArO ${ }^{\bullet}$ was measured by following the decrease in absorbance at 380 or 587 nm of the ArO ${ }^{\bullet}$ radical, as shown in Figure 2B. ${ }^{17,24-26}$ The pseudo-first-order rate constants ($k_{\text {obsd }}$) at 380 or 587 nm were linearly dependent on the concentration of α-TocH ($[\alpha$ $\mathrm{TocH}]$), and thus, the rate equation is expressed as

$$
\begin{equation*}
-\mathrm{d}\left[\mathrm{ArO}^{\bullet}\right] / \mathrm{d} t=k_{\mathrm{obsd}}\left[\mathrm{ArO}^{\bullet}\right]=k_{\mathrm{s}}[\alpha-\mathrm{TocH}]\left[\mathrm{ArO}^{\bullet}\right] \tag{4}
\end{equation*}
$$

where k_{s} is the second-order rate constant for oxidation of α TocH by ArO ${ }^{\bullet}$ radical. The rate constant $\left(k_{s}\right)$ was obtained by plotting $k_{\text {obsd }}$ against $[\alpha-\mathrm{TocH}]$, as shown in Figure 2C. The $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}$ (alone) value obtained is $7.02 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (see Table 1), where " $k_{s}^{\alpha-\text { TocH }}$ (alone)" means the ArO°-radical scavenging rate constants obtained in solution including only one component of AOH.

As described above, by reacting α-TocH with ArO^{\bullet} in DMSO, α-Toc ${ }^{\bullet}$ is produced rapidly. α-Toc ${ }^{\bullet}$ is unstable at 25.0 ${ }^{\circ} \mathrm{C}$; its absorption peak decreases gradually after passing though the maximum and disappears by a bimolecular reaction (reaction 5; see Figure 2D). ${ }^{30}$

$$
\begin{equation*}
\alpha-\mathrm{Toc}^{\bullet}+\alpha-\mathrm{Toc}^{\bullet} \xrightarrow{2 k_{\mathrm{d}}} \text { nonradical products (NRP) } \tag{5}
\end{equation*}
$$

As shown in Figure 2D, the maximum absorbance of α-Toc ${ }^{\bullet}$ observed at $t_{\text {max }}$ increases with increasing $[\alpha-\mathrm{TocH}]$ and

Figure 2. (A) Change in electronic absorption spectra of ArO^{\bullet} and $\alpha-\mathrm{Toc}^{\bullet}$ radicals during reaction of ArO^{\bullet} with α-TocH in DMSO solution at 25.0 ${ }^{\circ} \mathrm{C}$. Initial concentration is $\left[\mathrm{ArO}^{\bullet}\right]=6.85 \times 10^{-5} \mathrm{M}$ and $[\alpha-\mathrm{TocH}]=2.36 \times 10^{-3} \mathrm{M}$. Spectra were recorded at 200 ms intervals. Arrow indicates a decrease $\left(\mathrm{ArO}^{\bullet}\right)$ and an increase $\left(\alpha-\mathrm{Toc}^{\bullet}\right)$ in absorbance with time. Time dependences of the absorbance of (B) $\mathrm{ArO}^{\bullet} \mathrm{radical}($ at 380 nm$)$ and (D) α-Toc ${ }^{\bullet}$ radical (at 428 nm) in solutions including six and five different concentrations of α - TocH at $25.0^{\circ} \mathrm{C}$, respectively. (C) Pseudo-first-order rate constant $\left(k_{\text {obsd }}\right)$ versus $[\alpha$-TocH] plot.

Table 1. Second-Order Rate Constants ($k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone)) for Reaction 1 of ArO Radical with Seven Kinds of Antioxidants (AOHs), Relative Rate Constants ($k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) $/ k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}$ (alone)), and Second-Order Rate Constants ($k_{\mathrm{r}}^{\mathrm{AOH}}$) for Reaction 3 of α Toc ${ }^{\bullet}$ Radical with Ubiquinol-10 and PQQH_{2} in DMSO Solution at $25.0^{\circ} \mathrm{C}$

antioxidant	$k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone), ${ }^{a} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	avg $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone), $\mathrm{M}^{-1} \mathrm{~s}^{-1 b}$	$k_{\mathrm{s}}^{\text {AOH }}$ (alone) $/ k_{\mathrm{s}}^{\alpha-\text { TocH }}$ (alone)	$k_{\mathrm{r}}^{\mathrm{AOH}},{ }^{\text {a }} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
α-TocH	$(7.31 \pm 0.21) \times 10^{2}$	7.34×10^{2}	1.00	
	$(7.02 \pm 0.22) \times 10^{2}$			
	$(7.47 \pm 0.08) \times 10^{2}$			
	$(7.55 \pm 0.08) \times 10^{2}$			
	$(7.36 \pm 0.25) \times 10^{2}$			
$\mathrm{UQ}_{10} \mathrm{H}_{2}$	$(1.16 \pm 0.01) \times 10^{3}$	1.23×10^{3}	1.68	$(3.57 \pm 0.13) \times 10^{4}$
	$(1.27 \pm 0.02) \times 10^{3}$			
	$(1.25 \pm 0.02) \times 10^{3}$			
PQQH_{2}	$(2.63 \pm 0.04) \times 10^{2}$	2.52×10^{2}	0.343	$(1.08 \pm 0.02) \times 10^{5}$
	$(2.54 \pm 0.03) \times 10^{2}$			
	$(2.43 \pm 0.04) \times 10^{2}$			
	$(2.48 \pm 0.06) \times 10^{2}$			
EGCG	$(1.58 \pm 0.07) \times 10^{2}$	1.55×10^{2}	0.211	
	$(1.52 \pm 0.08) \times 10^{2}$			
EGC	$(1.22 \pm 0.03) \times 10^{2}$		0.166	
EC	$(1.86 \pm 0.06) \times 10$		0.0253	
CA	$(1.09 \pm 0.04) \times 10$		0.0149	

${ }^{a}$ Given as value \pm standard deviation. ${ }^{b}$ Avg denotes the average value.
approaches a constant value, because at high $[\alpha$-TocH $] \alpha$-Toc ${ }^{*}$ appears rapidly and the decay of α-Toc ${ }^{\bullet}$ is very small and negligible. Therefore, we can estimate the ε value of α-Toc ${ }^{\bullet}$ radical at $\lambda_{\text {max }}=428 \mathrm{~nm}$ by assuming that $\left[\alpha-\mathrm{Toc}^{\bullet}\right]$ at $t_{\text {max }}$ equals $\left[\mathrm{ArO}^{\bullet}\right]$ at $t=0 \mathrm{~s}$ and using Lambert-Beer's equation (absorbance (of α-Toc at $t_{\max }$) $=\varepsilon \times\left[\mathrm{ArO}^{\bullet}\right]_{t=0}$), as reported in a previous study ${ }^{30}$ The ε value of α-Toc ${ }^{\bullet}$ radical obtained was $3930 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ in DMSO solution.

Similarly, by reacting $\mathrm{UQ}_{10} \mathrm{H}_{2}$ with ArO • radical, the absorbance at 380 nm of ArO^{\bullet} decreases rapidly, as shown in Figure 3 A . The rate constant ($k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}$ (alone)) was obtained by

Figure 3. (A) Change in electronic absorption spectrum of $\mathrm{ArO}{ }^{\circ}$ radical during reaction of ArO - with $\mathrm{UQ}_{10} \mathrm{H}_{2}$ in DMSO at $25.0^{\circ} \mathrm{C}$. Initial concentration is $\left[\mathrm{ArO}^{\circ}\right]=6.78 \times 10^{-5} \mathrm{M}$ and $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]=2.09$ $\times 10^{-4} \mathrm{M}$. Absorption of $\mathrm{UQ}_{10} \mathrm{H}^{\bullet}$ was not observed. (B) Plots of $k_{\text {obsd }}$ versus $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$ for reactions of ArO radical with (i) $\mathrm{UQ}_{10} \mathrm{H}_{2}$ only (O) and (ii) mixture of α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}(\bullet)$ (see Table 2B). Dotted line shows the plots for which any synergistic effect is absent between α-TocH and $\mathrm{UQ}_{0} \mathrm{H}_{2}$.
plotting $k_{\text {obsd }}$ against $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right.$] (see Figure 3B). As shown in Figure 3A, we could not observe the absorption spectrum of $\mathrm{UQ}_{10} \mathrm{H}^{\bullet}$ radical because of its instability. ${ }^{31}$ By reaction of PQQH_{2} with ArO^{\bullet}, the absorbance at 587 nm of the ArO^{\bullet} decreases rapidly, as shown in Figure 4A. Measurement of the decay curve was performed at 610 nm , because strong absorption of PQQH_{2} overlaps that of ArO^{\bullet} at the wavelength region of $380-580 \mathrm{~nm}$ (see Figure 4A). The baseline

Figure 4. (A) Change in electronic absorption spectrum of ArO^{\bullet} radical during reaction of ArO^{\bullet} with PQQH_{2} in DMSO at $25.0^{\circ} \mathrm{C}$. $\left[\mathrm{ArO}^{\bullet}\right]=7.98 \times 10^{-5} \mathrm{M}$ and $\left[\mathrm{PQQH}_{2}\right]=5.27 \times 10^{-4} \mathrm{M}$. (B) Time dependences of the absorbance of ArO^{\bullet} radical at 610 nm in DMSO solutions including six different concentrations of PQQH_{2}, where the correction of baseline due to PQQH_{2} was performed (see text). (C) Plots of $k_{\text {obsd }}$ versus $\left[\mathrm{PQQH}_{2}\right]$ for reactions of ArO ${ }^{\bullet}$ radical with (i) PQQH_{2} only (O) and (ii) mixture of α-TocH and $\mathrm{PQQH}_{2}(\bigcirc)$ (see Table 2B). Dotted line shows the plots for which any synergistic effect is absent between α-TocH and PQQH_{2}.
corrections were performed by using the value of $\varepsilon=31.7$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 610 nm of PQOH_{2} in DMSO, as shown in Figure 4B. The rate constant ($k_{\mathrm{s}}^{\mathrm{PQQH}}{ }_{2}$ (alone)) was obtained by plotting $k_{\text {obsd }}$ against $\left[\mathrm{PQQH}_{2}\right]$ (see Figure 4C).

Measurements of the $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) values were repeated 3-5 times for every α-TocH, $\mathrm{UQ}_{10} \mathrm{H}_{2}$, and PQQH_{2} to obtain reliable $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) values. Each $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) value and average $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) values (showing experimental errors) obtained are summarized in Table 1. The $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) values of $\mathrm{UQ}_{10} \mathrm{H}_{2}$ and PQQH_{2} are 1.68 and 0.343 times as large as that of α-TocH, respectively.

Furthermore, the $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) values were measured for four kinds of well-known phenolic AOHs (EC, EGC, EGCG, and CA) to compare the $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) values with that of PQQH_{2}. The results obtained are listed in Table 1, together with those of α-TocH, $\mathrm{UQ}_{10} \mathrm{H}_{2}$, and PQQH_{2}. The $k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone) values obtained decreased in the order of eq 6.

$$
\begin{align*}
& \mathrm{UQ}_{10} \mathrm{H}_{2}>\alpha-\text { TocH }>\mathrm{PQQH}_{2}>\mathrm{EGCG}>\mathrm{EGC}>\mathrm{EC} \\
& \quad>\mathrm{CA} \tag{6}
\end{align*}
$$

The k_{s}^{AOH} (alone) value of PQQH_{2} was greater than those of hydrophilic AOHs (EGCG, EGC, EC, and CA) in DMSO solution. However, it was less than those of lipophilic AOHs ($\mathrm{UQ}_{10} \mathrm{H}_{2}$ and α-TocH).

Measurements of the Regeneration Rates $\left(k_{r}\right)$ of α Tocopherol by PQQH_{2} and Ubiquinol-10 in DMSO Solution. As described in the Methods section, measurement of the k_{r} value for reaction of α-Toc radical with $\mathrm{UQ}_{0} \mathrm{H}_{2}$ (reaction 3) was performed in DMSO solution, using a doublemixing stopped-flow spectrophotometer. ${ }^{29} \alpha$-Toc ${ }^{\bullet}$ radical was prepared by the first-mixing of equal volumes of α-TocH (cell A) and ArO (cell B) solutions (reaction 1), and after 2 s the second-mixing of equal volumes of α-Toc ${ }^{\bullet}$ solution and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ solution (cell C) (reaction 3) was made. The typical concentrations in cells A and B are 7.24×10^{-3} and 5.14×10^{-4} M , respectively. The decay curves of the absorbance of α-Toc ${ }^{\bullet}$ at 428 nm in DMSO are shown in Figure 5A, indicating that the decay rates increase with increasing [$\mathrm{UQ}_{10} \mathrm{H}_{2}$].

The pseudo first-order rate constants ($k_{\text {obsd }}$) observed at 428 nm were linearly dependent on $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$, and thus, the rate equation is expressed as follows:

$$
\begin{equation*}
-\mathrm{d}\left[\alpha-\mathrm{Toc}{ }^{\bullet}\right] / \mathrm{d} t=k_{\mathrm{obsd}}\left[\alpha-\mathrm{Toc}^{\bullet}\right]=k_{\mathrm{r}}\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]\left[\alpha-\mathrm{Toc}^{\bullet}\right] \tag{7}
\end{equation*}
$$

The k_{r} value was obtained by plotting $k_{\text {obsd }}$ against $\left[\mathrm{UQ}_{0} \mathrm{H}_{2}\right]$, as shown in Figure 5B.

Similar measurements were performed for the reaction of α Toc ${ }^{\bullet}$ with PQQH_{2} in DMSO solution. α-Toc ${ }^{\bullet}$ radical was prepared by the first-mixing of equal volumes of α-TocH and ArO^{\bullet} solutions, and after 2 s the second-mixing of equal volumes of $\alpha-\mathrm{Toc}^{\bullet}$ solution and PQQH_{2} solution (reaction 3) was performed (see Figure 6A). The decay curves of the absorbance of α-Toc at 428 nm in DMSO are shown in Figure 6 B . The baseline corrections were performed by using the value of $\varepsilon=1120 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 428 nm of PQQH_{2} in DMSO. Decay curves obtained by baseline correction are shown in Figure 6C, indicating that the decay rates increase with increasing concentrations of PQQH_{2}.

The $k_{\text {obsd }}$ versus $\left[\mathrm{PQQH}_{2}\right]$ plot is also shown in Figure 5B. k_{r} values obtained for $\mathrm{UQ}_{10} \mathrm{H}_{2}$ and PQQH_{2} are 3.57×10^{4} and $1.08 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, respectively, as listed in Table 1. The rate constant $\left(k_{\mathrm{r}}\right)$ of PQQH_{2} is 3.0 times larger than that of $\mathrm{UQ}_{10} \mathrm{H}_{2} . k_{\mathrm{r}}$ values obtained are very fast and about 2-3 orders of magnitude larger than those for $k_{s}^{\alpha-\text { TocH }}$ (alone) (avg $7.34 \times$ $10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$), $k_{\mathrm{s}}^{\mathrm{O} \mathrm{Q}_{10} \mathrm{H}_{2}}$ (alone) (avg $1.23 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$), and $k_{\mathrm{s}}^{\mathrm{PQQH}_{2}}$ (alone) (avg $2.52 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$).

Figure 5. (A) Time dependences of the absorbance of α-Toc radical at 428 nm in DMSO including six different concentrations of $\mathrm{UQ}_{10} \mathrm{H}_{2}$ at $25.0^{\circ} \mathrm{C}$. $(\mathrm{B}) k_{\text {obsd }}$ versus $[\mathrm{AOH}]\left(\mathrm{AOH}=\mathrm{UQ}_{0} \mathrm{H}_{2}\right.$ or $\left.\mathrm{PQQH}_{2}\right)$ plot.

Measurements of the Aroxyl Radical-Scavenging Rates (k_{s}) for Mixtures of $\boldsymbol{\alpha}$-Tocopherol and Ubiquinol10 in DMSO. Measurements of the $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}\left(+\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$ and $k_{\mathrm{s}}^{\mathrm{UC}_{1} \mathrm{H}_{2}}(+\alpha-\mathrm{TocH})$ values were performed for the solution including α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$. the terms " $k_{\mathrm{s}}^{\alpha-\text { TocH }}\left(+\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$ and $k_{\mathrm{s}}^{\mathrm{UQ}_{0} \mathrm{H}_{2}}(+\alpha$-TocH)" indicate the rate constants obtained in the solution including two components of AOHs. First, the $k_{\mathrm{s}}^{\alpha-\text { Toch }}\left(+\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$ value was measured by keeping $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$ constant $\left(4.96 \times 10^{-4} \mathrm{M}\right)$ and varying $[\alpha-\mathrm{TocH}](0$ to $1.89 \times$ $\left.10^{-3} \mathrm{M}\right)$. By mixing the solution of ArO^{\bullet} radical with the solution including α-TocH and $\mathrm{UQ}_{0} \mathrm{H}_{2}$, absorption of the ArO^{\bullet} at 380 and 587 nm decreases rapidly, as shown in Figure 7A. Absorption of α-Toc ${ }^{\bullet}$ at 428 nm was not observed at low $[\alpha$-TocH $]\left(0\right.$ to $\left.9.45 \times 10^{-4} \mathrm{M}\right)$, but weak absorption appeared at high $[\alpha-\mathrm{TocH}]\left((1.42-1.89) \times 10^{-3} \mathrm{M}\right)$; see Figure 7B). By analysis of the decay curves of ArO^{\bullet} at $380 \mathrm{~nm}, k_{\text {obsd }}$ values were determined. Figure 7C shows the $k_{\text {obsd }}$ versus [α-TocH] plot.

If α-TocH and $\mathrm{UQ}_{0} \mathrm{H}_{2}$ coexist in solution, reactions 8 and 9 will occur competively in solution, because the difference in the rate constants is less than two times, as listed in Table 1.

$$
\begin{align*}
& \mathrm{ArO}^{\bullet}+\alpha-\mathrm{TocH}+\mathrm{UQ}_{10} \mathrm{H}_{2} \\
& \xrightarrow{k_{s}^{\alpha-\text {-Toch }}} \mathrm{ArOH}+\alpha-\mathrm{Toc}^{\bullet}+\mathrm{UQ}_{10} \mathrm{H}_{2} \tag{8}
\end{align*}
$$

Figure 6. (A) Change in absorption spectrum (at 5 ms intervals) during reaction 3 of PQQH_{2} and α-Toc in DMSO at $25.0^{\circ} \mathrm{C}$. Initial concentration of $\left[\mathrm{PQQH}_{2}\right]$ in cell C was $2.08 \times 10^{-4} \mathrm{M}$. Arrow indicates a decrease in absorbance of α-Toc ${ }^{\bullet}$. (B) Absorbance decay of α-Toc ${ }^{\bullet}$ at 428 nm during reaction 3 in DMSO at $25.0^{\circ} \mathrm{C}$. (C) Baseline corrections for the absorption of PQQH_{2} at 428 nm were performed.

$$
\begin{align*}
& \mathrm{ArO} \bullet+\alpha-\mathrm{TocH}+\mathrm{UQ}_{10} \mathrm{H}_{2} \\
& \xrightarrow{k_{\mathrm{s}}^{\mathrm{UQ}} \mathrm{U}_{1 \mathrm{H}_{2}}} \mathrm{ArOH}+\alpha-\mathrm{TocH}+\mathrm{UQ}_{10} \mathrm{H}^{\bullet} \tag{9}
\end{align*}
$$

In such a case, we can expect that the $k_{\text {obsd }}$ value depends on eq 10 , if the interaction between α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ is negligible.

$$
k_{\mathrm{obsd}}=k_{\mathrm{s}}^{\alpha-\text { TocH }}(\text { alone })[\alpha-\mathrm{TocH}]+k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}} \text { (alone) }
$$

$$
\begin{equation*}
\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right] \tag{10}
\end{equation*}
$$

Figure 7. Change in electronic absorption spectrum of ArO ${ }^{\circ}$ radical during reaction of ArO - with a mixture of α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ in DMSO at $25.0^{\circ} \mathrm{C}$. $\left[\mathrm{ArO}^{\bullet}\right]=6.85 \times 10^{-5}$ and $\left[\mathrm{UQ}_{0} \mathrm{H}_{2}\right]=4.96 \times 10^{-4}$ M. (A) $[\alpha-\mathrm{TocH}]=4.73 \times 10^{-4} \mathrm{M}$ and (B) $[\alpha-\mathrm{TocH}]=1.89 \times 10^{-3}$ M. (C) Plots of $k_{\text {obsd }}$ versus $[\alpha-\mathrm{TocH}]$ for reactions of ArO^{\bullet} radical with (i) α-TocH only (O) and (ii) mixture of α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ (-) (see Table 2 A). Dotted line shows the plots for which any synergistic effect is absent between α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$.

By substitution of $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}$ (alone) and $k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}$ (alone) values and the value of $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]\left(4.96 \times 10^{-4} \mathrm{M}\right)$ used for measurement into eq $10, k_{\text {obsd }}$ was plotted against $[\alpha$-TocH] (see a dotted line in Figure 7C). The result of the $k_{\text {obsd }}$ versus $[\alpha-\mathrm{TocH}]$ plot (open circle) obtained for the solution including only α-TocH is also shown in Figure 7C. As described above, measurement was performed, by keeping $\mathrm{UQ}_{0} \mathrm{H}_{2}$ at a constant concentration and varying $[\alpha-\mathrm{TocH}]$. Consequently, the $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}$

Table 2. Second-Order Rate Constants ($k_{s}^{\mathrm{AOH}}(+2 \mathrm{nd} \mathrm{AOH})$) Obtained for Mixtures of Two Kinds of Antioxidants ((i) α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ and (ii) α-TocH and PQQH_{2}) and Ratios ($k_{\mathrm{s}}^{\mathrm{AOH}}(+2 \mathrm{nd} \mathrm{AOH}) / k_{\mathrm{s}}^{\mathrm{AOH}}$ (alone))

(A) Measurements Were Performed by Keeping [AOH] Constant and Varying [α-TocH]				$k_{\mathrm{s}}^{\alpha-\text { TocH }}(+\mathrm{AOH}) / k_{\mathrm{s}}^{\alpha-\text { TocH }} \text { (alone) }$
$\mathrm{UQ}_{10} \mathrm{H}_{2}$	4.96×10^{-4}	$(0-1.89) \times 10^{-4}$	$(1.26 \pm 0.01) \times 10^{3}$	1.72
PQQH_{2}	3.71×10^{-3}	$(0-1.84) \times 10^{-3}$	$(8.26 \pm 0.40) \times 10^{2}$	1.13
(B) Measurements Were Performed by Keeping [α-TocH] Constant and Varying [AOH]				
antioxidant (AOH)	[α-TocH], M	[AOH], M	$k_{\mathrm{s}}{ }^{\mathrm{AOH}}(+\alpha-\mathrm{TocH}),{ }^{a} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\mathrm{s}}^{\mathrm{AOH}}(+\alpha-\mathrm{TocH}) / k_{\mathrm{s}}^{\text {AOH }}$ (alone)
$\mathrm{UQ}_{10} \mathrm{H}_{2}$	1.67×10^{-3}	$(0-3.55) \times 10^{-4}$	$(3.08 \pm 0.08) \times 10^{3}$	2.50
		$(4.73-9.47) \times 10^{-4}$	$(6.33 \pm 2.19) \times 10^{2}$	0.515
PQQH_{2}	1.63×10^{-3}	$(0-3.06) \times 10^{-3}$	$(6.10 \pm 0.13) \times 10^{2}$	2.42

Figure 8. Change in electronic absorption spectra of ArO^{\bullet} and $\alpha-\mathrm{Toc}^{\bullet}$ radicals during reaction of ArO^{\bullet} with mixture of $\alpha-\mathrm{TocH}$ and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ in DMSO at $25.0^{\circ} \mathrm{C}$. $\left[\mathrm{ArO}^{\bullet}\right]=8.01 \times 10^{-5}$ and $[\alpha-\mathrm{TocH}]=1.67 \times 10^{-3} \mathrm{M}$. Spectra were recorded at (A) 160 ms , (B) 120 ms , (C) 120 ms , and (D) 80 ms intervals. Absorption of $\alpha-\mathrm{Toc}^{\bullet}$ decreased with increasing concentrations of $\mathrm{UQ}_{10} \mathrm{H}_{2} .(\mathrm{A})\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]=0 \mathrm{M},(\mathrm{B}) 1.89 \times 10^{-5} \mathrm{M},(\mathrm{C}) 7.57 \times$ $10^{-5} \mathrm{M}$, and (D) $9.47 \times 10^{-4} \mathrm{M}$.
$\left(+\mathrm{UQ}_{0} \mathrm{H}_{2}\right)$ value was determined from the gradient of the $k_{\text {obsd }}$ versus $[\alpha-\mathrm{TocH}]$ plot (closed circle) in Figure 7C, using eq 11.

$$
\begin{align*}
k_{\text {obsd }}= & k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}\left(+\mathrm{UQ}_{10} \mathrm{H}_{2}\right)[\alpha-\mathrm{TocH}]+k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}} \text { (alone) } \\
& {\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right] } \tag{11}
\end{align*}
$$

As expected from the gradient in Figure 7C, the $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}$ $\left(+\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$ value $\left(1.26 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ is 1.72 times larger than $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}$ (alone) $\left(7.34 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ obtained for the solution including only α-TocH. A notable effect due to the coexistence
of α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ in solution was observed for the rate constant $\left(k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}\left(+\mathrm{UQ}_{10} \mathrm{H}_{2}\right)\right)$.

As a notable effect of the coexistence of α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ was observed for the rate constants $\left(k_{s}^{\alpha-\operatorname{TocH}}\left(+\mathrm{UQ}_{0} \mathrm{H}_{2}\right)\right)$, similar measurements were performed for the solutions including α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$, by keeping [α-TocH] constant and varying $\left[\mathrm{UQ}_{0} \mathrm{H}_{2}\right]$ (see Table 2B). As shown in Figure 8AD , the absorption of α-Toc ${ }^{\bullet}$ at 428 nm decreased with increasing the concentration of $\mathrm{UQ}_{0} \mathrm{H}_{2}$, suggesting that the α Toc ${ }^{\bullet}$ produced is regenerated quickly to α-TocH by the
reaction with $\mathrm{UQ}_{10} \mathrm{H}_{2}$ (reaction 3), because the regeneration rate constant ($k_{\mathrm{r}}=3.57 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) is very fast compared with the $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}\left(+\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$ value $\left(1.26 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$.

As shown in Figure 3B, the $k_{\text {obsd }}$ versus $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$ plot (closed circle) consists of two lines having different gradients. The analysis of the rate constant $\left(k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}(+\alpha-\mathrm{TocH})\right)$ was performed tentatively by using eq 12 similar to eq 11 .

$$
\begin{align*}
k_{\text {obsd }}= & k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}(\text { alone })[\alpha-\mathrm{TocH}]+k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}(+\alpha-\mathrm{TocH}) \\
& {\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right] } \tag{12}
\end{align*}
$$

The $k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}(+\alpha-\mathrm{TocH})$ values obtained at low and high $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]\left((0-3.55) \times 10^{-4}\right.$ and $\left.(4.73-9.47) \times 10^{-4} \mathrm{M}\right)$ are 3.08×10^{3} and $6.33 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, respectively (see Table 2B). The $k_{s}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}(+\alpha-\mathrm{TocH})$ values of the former and the latter are 2.50 and 0.515 times larger and smaller than the $k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}$ (alone) value, respectively.

Measurements of the Aroxyl Radical-Scavenging Rates (k_{s}) for Mixtures of α-Tocopherol and PQQH_{2} in DMSO. Similar measurements (see Table 2A) were performed for the solution including α-TocH and PQQH_{2} by keeping $\left[\mathrm{PQQH}_{2}\right]$ constant and varying $[\alpha$-TocH]. The scavenging rate ($k_{\text {obsd }}$) of ArO^{\bullet} was measured by following the decrease in absorbance at 587 nm of the ArO ${ }^{\bullet}$ radical (see Figure 9A). ${ }^{17}$ The $k_{\text {obsd }}$ versus $[\alpha-\mathrm{TocH}]$ plot is shown in Figure 9B. As performed for mixture of α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ (see eq 11), the $k_{\mathrm{s}}^{\alpha-\text { TocH }}\left(+\mathrm{PQQH}_{2}\right)$ values were determined. The $k_{\mathrm{s}}^{\alpha \text {-TocH }}$ $\left(+\mathrm{PQQH}_{2}\right)$ values $\left(8.26 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ obtained under the coexistence of PQQH_{2} are 1.13 times larger than the $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}$ (alone) value ($\operatorname{avg} 7.34 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$).

The $k_{\mathrm{s}}^{\mathrm{PQQH}}{ }_{2}(+\alpha$-TocH) value was measured by keeping [α $\mathrm{Toch}]$ constant $\left(1.63 \times 10^{-3} \mathrm{M}\right)$ and varying $\left[\mathrm{PQQH}_{2}\right]((0-$ $\left.3.06) \times 10^{-3} \mathrm{M}\right)($ see Table 2 B$)$. As shown in Figure $10 \mathrm{~A}-\mathrm{D}$, absorption of α-Toc ${ }^{\bullet}$ at 428 nm decreased with increasing concentration of PQQH_{2}, suggesting that the α-Toc ${ }^{\bullet}$ produced is regenerated quickly to α-TocH by reaction with PQQH_{2} (reaction 3), because the regeneration rate constant $\left(k_{\mathrm{r}}\right)(1.08$ $\left.\times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ is very fast compared with the $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}$ $\left(+\mathrm{PQQH}_{2}\right)$ value $\left(8.26 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$.

Figure 4 C shows the $k_{\text {obsd }}$ versus $\left[\mathrm{PQQH}_{2}\right]$ plot. From the gradient, the $k_{\mathrm{s}}^{\mathrm{PQQH}_{2}}(+\alpha-$ TocH $)$ value $\left(6.10 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ was obtained. The value is 2.42 times larger than $k_{s}^{\mathrm{PQOH}_{2}}$ (alone) $\left(2.52 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$. Large synergistic effect was observed under the coexistence of α-TocH and PQQH_{2}.

Decrease in UV-Vis Absorption of α-Tocopheroxyl Radical under the Coexistence of α-Tocopherol and PQQH_{2} (or Ubiquinol-10). Upon reaction of ArO^{\bullet} radical with α-TocH, absorption of α-Toc radical appears rapidly and decreases gradually, as shown in Figure 2D. The concentration of α-Toc ${ }^{\bullet}$ radical ($\left.\left[\alpha-\mathrm{Toc}^{\bullet}\right]\right)$ produced by reaction with ArO^{\bullet} $\left(\left[\mathrm{ArO}^{\bullet}\right]=6.85 \times 10^{-5} \mathrm{M}\right)$ is similar to that of ArO^{\bullet}, if a high concentration of α-TocH was used for the reaction, as described in a previous section and reported in a previous study. ${ }^{30}$

On the other hand, if $\mathrm{UQ}_{10} \mathrm{H}_{2}$ coexists in the above solution, absorption of α-Toc ${ }^{\bullet}$ radical at 428 nm decreases greatly with increasing $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$ and disappears at higher $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$, as shown in Figure 8. The time dependence of $\left[\alpha\right.$-Toc $\left.{ }^{\circ}\right]$ observed at $\lambda_{\text {max }}(428 \mathrm{~nm})$ is shown in Figure 11A, where $\left[\alpha-\mathrm{Toc}^{\bullet}\right]$ was calculated from the absorbance of α-Toc*, using the relation (absorbance $=\varepsilon c l, \varepsilon=3930 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$). ${ }^{30}$ Figure 11B shows the $\left[\alpha-\mathrm{Toc}^{\bullet}\right]$ (at 1.5 s in Figure 11A) versus $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$ plot, indicating that the $\left[\alpha-\mathrm{Toc}^{\bullet}\right]$ at 1.5 s decreases rapidly with

Figure 9. (A) Change in electronic absorption spectrum of ArO^{\bullet} radical during reaction of ArO^{\bullet} with a mixture of $\alpha-\mathrm{TocH}$ and PQQH_{2} in DMSO at $25.0^{\circ} \mathrm{C} .\left[\mathrm{ArO}^{\bullet}\right]=9.27 \times 10^{-5},[\alpha-\mathrm{TocH}]=4.60 \times 10^{-4}$, and $\left[\mathrm{PQQH}_{2}\right]=3.71 \times 10^{-3} \mathrm{M}$. (B) Plots of $k_{\text {obsd }}$ versus $[\alpha-\mathrm{TocH}]$ for reaction of ArO^{\bullet} radical with (i) α-TocH only (O) and (ii) mixture of α-TocH and $\mathrm{PQQH}_{2}(\bigcirc)$ (see Table 2A). Dotted line shows the plots for which any synergistic effect is absent between α-TocH and PQQH_{2}.
increasing $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$. As shown in Figure 11A, if $\left[\mathrm{UQ}_{0} \mathrm{H}_{2}\right] \leq$ $1.89 \times 10^{-5} \mathrm{M}$ (plot c), α-Toc ${ }^{\bullet}$ does not disappear at 10 s and remains in solution for a few minutes. However, if $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]=$ $3.79 \times 10^{-5} \mathrm{M}$ (plot d), absorption of α - Toc ${ }^{\bullet}$ disappears at ~ 7 s. The result suggests that one molecule of $\mathrm{UQ}_{10} \mathrm{H}_{2}$ quickly regenerates two molecules of α-Toc ${ }^{\bullet}$ to two molecules of α TocH , because the initial $\left[\alpha-\mathrm{Toc}^{\bullet}\right]\left(=\left[\mathrm{ArO}^{\bullet}\right]\right)$ is 8.01×10^{-5} M (see Figures 8 and 11). Two HO groups in $\mathrm{UQ}_{10} \mathrm{H}_{2}$ molecule will contribute to the regeneration reaction of α Toc ${ }^{\bullet}$ radical. With increasing $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$ ((d) 3.79×10^{-5}, (e) 5.68×10^{-5}, (f) $7.57 \times 10^{-5},(\mathrm{~g}) 1.18 \times 10^{-4} \mathrm{M}$), the time at which absorption of α-Toc disappears decreases in the order of $\sim 7,5,4$, and 3.5 s , respectively.

Similar measurements were performed for solutions including α-TocH and PQQH_{2}. The time dependence of $[\alpha$ Toc ${ }^{\circ}$] observed at $\lambda_{\text {max }}(428 \mathrm{~nm})$ is shown in Figure 12A. Because the absorption of PQQH_{2} overlaps that of $\alpha-\mathrm{Toc}^{\circ}$, baseline correction was performed (see Figure 12B). As shown in Figure 12B, $\left[\alpha-\right.$ Toc $\left.^{\bullet}\right]$ decreases abruptly with increasing $\left[\mathrm{PQQH}_{2}\right]$. The $\left[\alpha-\mathrm{Toc}^{\bullet}\right]$ (at 1.5 s in Figure 12B) versus $\left[\mathrm{PQQH}_{2}\right]$ plot is shown in Figure 12C, indicating that the $[\alpha$ Toc ${ }^{\circ}$ at 1.5 s decreases rapidly with increasing $\left[\mathrm{PQQH}_{2}\right]$. As

Figure 10. (A) Change in electronic absorption spectra of ArO^{\bullet} and $\alpha-\mathrm{Toc}^{\bullet}$ radicals during reaction of ArO^{\bullet} with a mixture of $\alpha-\mathrm{TocH}$ and $\mathrm{PQQH}{ }_{2}$ in DMSO at $25.0^{\circ} \mathrm{C}$. $\left[\mathrm{ArO}^{\bullet}\right]=9.20 \times 10^{-5}$ and $[\alpha-\mathrm{TocH}]=1.54 \times 10^{-3} \mathrm{M}$. Spectra were recorded at 200 ms intervals. Absorption of α-Toc ${ }^{\bullet}$ decreased with increasing concentrations of $\mathrm{PQQH}_{2} .(\mathrm{A})\left[\mathrm{PQQH}_{2}\right]=0 \mathrm{M},(\mathrm{B}) 8.98 \times 10^{-6} \mathrm{M},(\mathrm{C}) 2.25 \times 10^{-5} \mathrm{M}$, and (D) $6.74 \times 10^{-5} \mathrm{M}$.
shown in Figure 12B, if $\left[\mathrm{PQQH}_{2}\right]=4.49 \times 10^{-5} \mathrm{M}$ (plot i), absorption of α-Toc completely disappears at $\sim 9 \mathrm{~s}$. As observed for $\mathrm{UQ}_{10} \mathrm{H}_{2}, \mathrm{PQQH}_{2}$ having two HO groups in a molecule may also quickly regenerate two molecules of α-Toc ${ }^{\bullet}$ to two molecules of α-TocH, because the initial [$\alpha-\mathrm{Toc}^{\bullet}$] (= [ArO^{\bullet}]) is $9.20 \times 10^{-5} \mathrm{M}$ (see Figures 10 and 12). Further, the result suggests that the contribution of NH group in PQQH_{2} to the regeneration reaction of $\alpha-\mathrm{Toc}^{\bullet}$ is negligible. With increasing $\left[\mathrm{PQQH}_{2}\right]\left(=(\mathrm{i}) 4.49 \times 10^{-5},(\mathrm{j}) 6.74 \times 10^{-5},(\mathrm{k})\right.$ $\left.1.80 \times 10^{-4} \mathrm{M}\right)$, the time at which absorption of α-Toc ${ }^{\circ}$ disappears decreases in the order of $\sim 9,5,2 \mathrm{~s}$, respectively.

DISCUSSION

Comparison of Aroxyl Radical-Scavenging and α -Tocopheroxyl-Regeneration Rates ($\boldsymbol{k}_{\mathrm{s}}$ and $\boldsymbol{k}_{\mathrm{r}}$) of PQQH_{2} with the Other Natural Antioxidants in DMSO Solution. α-TocH is well-known as one of the most important lipophilic antioxidants (AOHs) in foods and biological systems. ${ }^{32-35}$ The antioxidant action of $\alpha-\mathrm{TocH}$ has been ascribed to the scavenging reaction of LOO^{\bullet}, producing the corresponding α-Toc ${ }^{\circ}$ radical (reaction 13). ${ }^{32}$ On the other hand, if α-TocH exists in biomembranes and edible oils, α-Toc ${ }^{\bullet}$ radicals may react with unsaturated lipids (LHs) (reaction 14). Reaction 14 is known as a prooxidant reaction, which induces degradation of unsaturated lipids. ${ }^{36-39}$

$$
\begin{align*}
& \mathrm{LOO}^{\bullet}+\alpha-\mathrm{TocH} \xrightarrow{k_{\text {inh }}} \mathrm{LOOH}+\alpha-\mathrm{Toc}^{\bullet} \tag{13}\\
& \alpha-\mathrm{Toc}^{\bullet}+\mathrm{LH} \xrightarrow{k_{\mathrm{p}}} \alpha-\mathrm{TocH}+\mathrm{L}^{\bullet} \tag{14}
\end{align*}
$$

$\mathrm{UQ}_{10} \mathrm{H}_{2}$ is also well-known as a representative lipophilic $\mathrm{AOH} .{ }^{40,41} \mathrm{UQ}_{0} \mathrm{H}_{2}$ functions as an AOH by (i) scavenging LOO^{\bullet} (reaction 15) and (ii) regenerating α-Toc ${ }^{\bullet}$ to α-TocH (reaction 16), ${ }^{32,40,41}$

$$
\begin{align*}
& \mathrm{LOO}^{\bullet}+\mathrm{UQ}_{10} \mathrm{H}_{2} \xrightarrow{k_{\text {inh }}} \mathrm{LOOH}+\mathrm{UQ}_{10} \mathrm{H}^{\bullet} \tag{15}\\
& \alpha-\mathrm{Toc}^{\bullet}+\mathrm{UQ}_{10} \mathrm{H}_{2} \xrightarrow{k_{\mathrm{r}}} \alpha-\mathrm{TocH}+\mathrm{UQ}_{10} \mathrm{H}^{\bullet} \tag{16}
\end{align*}
$$

where $\mathrm{UQ}_{10} \mathrm{H}^{\bullet}$ denotes a ubisemiquinone radical. The results of the kinetic studies for reactions 15 and 16 indicated that both reactions are important for the antioxidant actions of $\mathrm{UQ}_{10} \mathrm{H}_{2}$. ${ }^{29,42-44}$

On the other hand, Vit C (ascorbate monoanion, AsH^{-}) is a representative water-soluble AOH. Hydrophilic AsH^{-}also enhances the antioxidant activity of α-TocH by regenerating α Toc ${ }^{\bullet}$ to α-TocH (reaction 17). ${ }^{45-47}$

$$
\begin{equation*}
\alpha-\mathrm{Toc}^{\bullet}+\mathrm{AsH}^{-} \xrightarrow{k_{\mathrm{r}}} \alpha-\mathrm{TocH}+\mathrm{As}^{-\bullet} \tag{17}
\end{equation*}
$$

where $\mathrm{As}^{-\bullet}$ is ascorbate free radical.

Figure 11. (A) Time dependences of the concentration of $\alpha-\operatorname{Toc}^{\circ}$ radical $\left[\alpha-\right.$ Toc $\left.^{\bullet}\right]$ (at 428 nm) in DMSO including 11 different concentrations of $\mathrm{UQ}_{10} \mathrm{H}_{2}$ at $25.0^{\circ} \mathrm{C}$. (B) $\left[\alpha-\mathrm{Toc}^{\bullet}\right]$ at 1.5 s in panel A versus $\left[\mathrm{UQ}_{10} \mathrm{H}_{2}\right]$ plot.

In a previous study, we measured the k_{s} values for reaction of ArO ${ }^{\bullet}$ radical with PQQH_{2} and water-soluble AOHs (Vit C, cysteine, glutathione, and UA) in 5.0 wt \% Triton X-100 micellar solution (pH 7.4). ${ }^{17}$ The k_{s} values decreased in the order of $\mathrm{PQQH}_{2}>$ Vit $\mathrm{C} \gg$ cysteine $>$ UA $>$ glutathione. The k_{s} value of PQQH_{2} was 7.4 times larger than that of Vit C.

Furthermore, the k_{Q} values for reaction of ${ }^{1} \mathrm{O}_{2}$ with PQQH_{2}, PQQNa_{2}, and seven kinds of water- and lipid-soluble AOHs (Vit C, UA, EC, EGC, α-TocH, $\mathrm{UQ}_{10} \mathrm{H}_{2}$, and β-carotene (β Car)) were measured in micellar solution (pH 7.4). ${ }^{27}$ The k_{Q} values decreased in the order of β-Car $>\mathrm{PQQH}_{2}>\alpha$-Toc $>\mathrm{UA}$ $>\mathrm{UQ}_{10} \mathrm{H}_{2}>$ Vit $\mathrm{C} \approx \mathrm{EGC}>\mathrm{EC} \gg \mathrm{PQQNa}_{2}$. The ${ }^{1} \mathrm{O}_{2}-$ quenching activity of PQQH_{2} was found to be 6.3, $2.2,6.1$, and 22 times larger than the corresponding ones of water-soluble AOHs (Vit C, UA, EGC, and EC). Further, the activity of PQQH_{2} was found to be 2.2 and 3.1 times larger than the corresponding ones of lipid-soluble AOHs (α-Toc and $\mathrm{UQ}_{0} \mathrm{H}_{2}$), respectively. On the other hand, the activity of PQQH_{2} is 6.4 times smaller than that of β-Car. The result suggests that PQQH_{2} may contribute to the protection of oxidative damage in biological systems, by quenching ${ }^{1} \mathrm{O}_{2}$.

In the present work, k_{s} value was measured for PQQH_{2} and seven AOHs in DMSO solution. As listed in Table 1, the k_{s} value of PQQH_{2} decreased in the order of eq 6 . The k_{s} value of PQQH_{2} was greater than those of water-soluble AOHs (EGCG, EGC, EC, and CA). However, it was less than those

Figure 12. (A) Time dependences of the concentration of α-Toc ${ }^{\circ}$ radical $\left[\alpha\right.$ - $\left.\mathrm{Toc}^{\bullet}\right]$ (at 428 nm) in DMSO including 13 different concentrations of PQQH_{2} at $25.0^{\circ} \mathrm{C}$. (B) Baseline corrections for the absorption of PQQH_{2} in panel A were performed. (C) $\left[\alpha-\mathrm{Toc}^{\circ}\right]$ at 1.5 s in panel B versus $\left[\mathrm{PQQH}_{2}\right]$ plot.
of lipid-soluble AOHs (α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$) in DMSO. Further, measurement of k_{r} value was performed for PQQH_{2} and $\mathrm{UQ}_{0} \mathrm{H}_{2}$ in DMSO solution. The k_{r} value for PQQH_{2} was 3.0 times larger than that for $\mathrm{UQ}_{0} \mathrm{H}_{2}$, as listed in Table 1.

Measurements of the k_{s} and k_{r} values of Vit C (and $\mathrm{Na}^{+} \mathrm{AsH}^{-}$) were tried in DMSO to compare with that of PQQH_{2}. However, to our regret, we could not determine the k_{s} and k_{r} values, because of low solubility of Vit C (and $\mathrm{Na}^{+} \mathrm{AsH}^{-}$) in DMSO.

As described above, the k_{Q} value of PQQH_{2} was greater than those of α-TocH and $\mathrm{UQ}_{0} \mathrm{H}_{2}$ in micellar solution (pH 7.4). Similarly, the k_{r} value of PQQH_{2} was greater than that of $\mathrm{UQ}_{10} \mathrm{H}_{2}$ in DMSO. On the other hand, the k_{s} value of PQQH_{2} was less than those of α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ in DMSO.

Catechins (EC, ECG, EGC, and EGCG) are catechol (or pyrogallol) derivatives. In previous works, detailed kinetic studies have been performed for the reaction of catechins with ArO^{\bullet} and 5,7-di-isopropyl-tocopheroxyl (5,7-di-iPr-Toc ${ }^{\bullet}$) radicals in 5.0 wt \% Triton X-100 solution. ${ }^{48,49}$ The ArO* radical-scavenging and 5,7 -di-iPr-Toc ${ }^{\bullet}$ radical-regeneration rates (k_{s} and k_{r}) of catechins were constant between $\mathrm{pH}=4$ and 6 , and increased rapidly with increasing $\mathrm{pH} 6-10$ in micellar solution. The increase of the k_{s} and k_{r} values was considered to be due to the deprotonation of HO group in catechins. PQQH_{2} is also a catechol derivative. Consequently, we can expect that both k_{s} and k_{r} values of PQQH_{2} increase with increasing pH value. It will be necessary to measure the pH dependence of the k_{s}, k_{r}, and k_{Q} values of PQQH_{2} in micellar solution in order to clarify the structure-activity relationship of the antioxidant activity of PQQH_{2} in solution.

Finding of Synergistic Effect on the Aroxyl RadicalScavenging Rates (k_{s}) under the Coexistence of α Tocopherol and PQQH_{2} (or Ubiquinol-10). The free radical-scavenging AOHs function not only individually but also synergistically with other AOHs. The most well-known interaction is the one between α-TocH and Vit C. . ${ }^{32,45-47}$ Hydrophilic Vit C present in the aqueous phase efficiently reduces α-Toc radical located within the membranes and lipoproteins to regenerate $\alpha-\mathrm{TocH}$ (reaction 17) and to inhibit the initiation of chain reaction induced by α-Toc ${ }^{\bullet}$ (that is the prooxidant effect of α-TocH) (reaction 14). Similarly, lipophilic $\mathrm{UQ}_{10} \mathrm{H}_{2}$ regenerates α-TocH during lipid peroxidation in solution, liposomal membranes, low density protein, and mitochondrial membranes (reaction 16)..29,40,41,43

It is well-known that various AOHs coexist in many foods and plants, ${ }^{33}$ and biological systems. ${ }^{50-53}$ However, the examples of measurement of free radical-scavenging rate under the coexistence of two AOHs are very limited, as far as we know. ${ }^{54}$ Very recently, it has been found that the ArO ${ }^{\bullet}$ radical-scavenging rates $\left(k_{s}\right)$ increase notably under the coexistence of the above two AOHs ((i) α-TocH and Vit C and (ii) α-TocH and $\mathrm{UQ}_{5} \mathrm{H}_{2}$) in 2-propanol/water ($5: 1, \mathrm{v} / \mathrm{v}$) solution. ${ }^{55}$

PQQ was found in many kinds of fruits and foods. ${ }^{3,13,56}$ Furthermore, the existence of small amounts of free PQQ was found in eight human organs, plasma, and urine and in three rat organs. ${ }^{11}$ The result suggests that PQQH_{2} coexists with α TocH in many biological systems.

Therefore, in the present work, measurements of ArO^{\bullet} radical-scavenging rate $\left(k_{\mathrm{s}}^{\mathrm{AOH}}\right.$ (alone)) of AOHs (α-TocH, PQQH_{2}, and $\mathrm{UQ}_{10} \mathrm{H}_{2}$) were performed in DMSO solution. The k_{s}^{AOH} values were measured not only for each AOH , but also for mixtures of two kinds of AOHs ((i) α-TocH and PQQH_{2} and (ii) α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$). As described in the Results section, a notable synergistic effect was observed for the k_{s}^{AOH} values. For example, the $k_{\mathrm{s}}^{\alpha-\mathrm{TocH}}\left(+\mathrm{UQ}_{0} \mathrm{H}_{2}\right)$ value $(1.26 \times$ $10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) obtained in solution including α-TocH and
$\mathrm{UQ}_{10} \mathrm{H}_{2}$ was 1.72 times larger than the $k_{\mathrm{s}}^{\alpha-\text { TocH }}$ (alone) value (avg $7.34 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) in solution including only α-TocH (see Tables 1 and 2). The effect of the coexistence of α-TocH and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ was more notable for the $k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}(+\alpha-\mathrm{TocH})$. Especially, at low concentration region of $\mathrm{UQ}_{0} \mathrm{H}_{2}((0-3.55) \times$ $\left.10^{-4} \mathrm{M}\right), k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}(+\alpha-\mathrm{TocH})\left(3.08 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ was 2.50 times larger than the $k_{\mathrm{s}}^{\mathrm{UQ}_{10} \mathrm{H}_{2}}$ (alone) (avg $1.23 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$).

Furthermore, the $k_{\mathrm{s}}^{\alpha-\mathrm{Toch}}\left(+\mathrm{PQQH}_{2}\right)\left(8.26 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ was 1.13 times larger than the $k_{s}^{\alpha-\text { Toch }}$ (alone) (avg 7.34×10^{2} $\mathrm{M}^{-1} \mathrm{~s}^{-1}$; see Table 1). Similarly, the $k_{\mathrm{s}}^{\mathrm{PQQH}_{2}}(+\alpha$-TocH) $(6.10 \times$ $10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) was 2.42 times larger than the $k_{\mathrm{s}}^{\mathrm{PQQH}}{ }_{2}$ (alone) (avg $2.52 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$).

As described above, notable increase of the ArO^{\bullet} radicalscavenging rate $\left(k_{\mathrm{s}}^{\mathrm{AOH}}\right)$ was observed for the AOHs under the coexistence of AOHs. However, the mechanism why the $k_{\mathrm{s}}^{\mathrm{AOH}}$ values increase under the coexistence of two AOHs is not clear at present. ${ }^{55}$

UV-Vis Absorption of α-Tocopheroxyl Radical Disappears under the Coexistence of α-Tocopherol and PQQH_{2} (or Ubiquinol-10): Suppression of Prooxidant Effect of α-Tocopherol. As described above, α-Toc ${ }^{\bullet}$ is an important key radical, which appears in the process of the antioxidant and prooxidant actions of α-TocH (see reactions 13-17). As described in the Results section, formation of α Toc ${ }^{\bullet}$ radical was suppressed remarkably under the coexistence of α-TocH and $\mathrm{PQQH}_{2}\left(\right.$ or $\left.\mathrm{UQ}_{10} \mathrm{H}_{2}\right)$. As shown in Figures 8 and $10-12$, we could directly ascertain that α-Toc ${ }^{\bullet}$ radical produced by the reaction with ArO^{\bullet} radical immediately disappears through the regeneration reaction with PQQH_{2} and $\mathrm{UQ}_{10} \mathrm{H}_{2}$, by observing the decrease of $\mathrm{UV}-$ vis absorption of α Toc ${ }^{\bullet}$ radical. Furtheremore, it has been clarified that PQQH_{2} or $\mathrm{UQ}_{10} \mathrm{H}_{2}$ having two OH groups within a molecule may rapidly regenerate two molecules of α-Toc ${ }^{\bullet}$ to two molecules of α TocH. In fact, the regeneration rate constants $\left(k_{\mathrm{r}}\right)$ obtained for PQQH_{2} and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ were very fast, as listed in Table 1. An example for such a direct observation of the disappearance of α Toc ${ }^{\circ}$ radical under the coexistence of $\alpha-\mathrm{TocH}$ and PQQH_{2} (or $\mathrm{UQ}_{10} \mathrm{H}_{2}$) has not been reported, as far as we know.

As described above, α-TocH, PQQH_{2}, and $\mathrm{UQ}_{10} \mathrm{H}_{2}$ coexist in foods and biological systems (such as plasma, blood, and various tissues). ${ }^{3,11,13,56}$ Consequently, the above synergistic effect, that is, the increase of the free radical-scavenging rate and the suppression of the prooxidant reaction, may function in foods and biological systems.

AUTHOR INFORMATION

Corresponding Authors

*(K.M.) Tel: 81-89-927-9588. Fax: 81-89-927-9590. E-mail: mukai-k@dpc.ehime-u.ac.jp,
*(A.O.) E-mail: ouchiaya@dpc.ehime-u.ac.jp.

Funding

This work was partly supported by a Grant-in-Aid for Challenging Exploratory Research (No. 24658123) from the Japan Society for the Promotion of Science.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Duine, J. A.; Frank, J. J.; Jongejan, J. A. Glucose dehydrogenase from Acinetobacter calcoaceticus. A 'quinoprotein'. FEBS Lett. 1979, 108, 443-446.
(2) Salisbury, S. A.; Forrrest, H. S.; Gruse, W. B. T; Kennard, O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 1979, 280, 843-844.
(3) Stites, T. E.; Mitchel, A. E.; Rucker, R. B. Physiological importance of quinoenzymes and o-quinone family of cofactors. J. Nutr. 2000, 130, 719-727.
(4) Rucker, R.; Chowanadisai, W.; Nakano, M. Potential physiological importance of pyrroloquinoline quinone. Altern. Med. Rev. 2009, 14, 268-277.
(5) Killgore, J.; Smidt, C.; Duich, L.; Romero-Chapman, N.; Tinker, D.; Reiser, K.; Melko, M.; Hyde, D.; Rucker, R. B. Nutritional importance of pyrroloquinoline quinone. Science 1989, 245, 850-852.
(6) Bauerly, K. A.; Storms, D. H.; Harris, C. B.; Hajizadeh, S.; Sun, M. Y.; Cheung, C. P.; Satre, M. A.; Fascetti, A. J.; Tchaparian, E.; Rucker, R. B. Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat. Biochim. Biophys. Acta 2006, 1760, 1741-1748.
(7) Chowanadisai, W.; Bauerly, K. A.; Tchaparian, E.; Wong, A.; Cortopassi, G. A.; Rucker, R. B. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J. Biol. Chem. 2010, 285, 142-52.
(8) Yamaguchi, K.; Sasano, A.; Urakami, T.; Tsuji, T.; Kondo, K. Stimulation of nerve growth factor production by pyrroloquinoline quinone and its derivatives in vitro and in vivo. Biosci., Biotechnol., Biochem. 1993, 57, 1231-1233.
(9) Liu, S.; Li, H.; Yang, J.; Peng, H.; Wu, K.; Liu, Y.; Yang, J. Enhanced rat sciatic nerve regeneration through silicon tubes filled with pyrroloquinoline quinone. Microsurgery 2005, 25, 329-337.
(10) Hirakawa, A.; Shimizu, K.; Fukumitsu, H.; Furukawa, S. Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem. Biophys. Res. Commun. 2009, 378, 308312.
(11) Kumazawa, T.; Seno, H.; Urakami, T.; Matsumato, T.; Suzuki, O. Trace levels of pyrroloquinoline quinone in human and rat samples detected by gas chromatography/mass spectroscopy. Biochim. Biophys. Acta 1992, 1156, 62-66.
(12) Mitcell, A. E.; Johnes, A. D.; Mercer, R. S.; Rucker, R. B. Characterization of pyrroloquinoline quinone amino acid derivatives by electrospray ionization mass spectrometry and detection in human milk. Anal. Biochem. 1999, 269, 317-325.
(13) Kumazawa, T.; Sato, K.; Seno, H.; Ishii, A.; Suzuki, O. Levels of pyrroloquinoline quinone in various foods. Biochem. J. 1995, 307, 331-333.
(14) Noji, N.; Nakamura, T.; Kitahata, N.; Taguchi, K.; Kudo, T.; Yoshida, S.; Tsujimoto, M.; Sugiyama, T.; Asami, T. Simple and sensitive method for pyrroloquinoline quinone (PQQ) analysis in various foods using liquid chromatography/electrospray-ionization tandem mass spectrometry. J. Agric. Food Chem. 2007, 55, 7258-7263.
(15) Miyauchi, K.; Urakami, T.; Abeta, H.; Shi, H.; Noguchi, N.; Niki, E. Action of pyrroloquinolinequinol as an antioxidant against lipid peroxidation in solution. Antioxid. Redox Signaling 1999, 1, 547554.
(16) He, K.; Nukada, H.; Urakami, T.; Murphy, M. P. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological systems. Biochem. Pharmacol. 2003, 65, 67-74.
(17) Ouchi, A.; Nakano, M.; Nagaoka, S.; Mukai, K. Kinetic study of the antioxidant activity of pyrroloquinolinequinol $\left(\mathrm{PQQH}_{2}\right.$, a reduced form of pyrroloquinolinequinone) in micellar solution. J. Agric. Food Chem. 2009, 57, 450-456.
(18) Hara, H.; Hiramatsu, H.; Adachi, T. Pyrroloquinoline quinone is a potent neuroprotective nutrient against 6-hydroxydopamine-induced neurotoxicity. Neurochem. Res. 2007, 32, 489-495.
(19) Nunome, K.; Miyazaki, S.; Nakano, M.; Iguchi-Ariga, S.; Ariga, H. Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1. Biol. Pharm. Bull. 2008, 31, 1321-1326.
(20) Zhu, B.-q.; Simonis, U.; Cecchini, G.; Zhou, H.-Z.; Li, L.; Teerlink, J. R.; Karliner, J. S. Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 2006, 11, 119-128.
(21) Zhang, Y.; Feustel, P. J.; Kimelberg, H. K. Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res. 2006, 1094, 200-206.
(22) Ohwada, K.; Takeda, H.; Yamazaki, M.; Isogaki, H.; Nakano, M.; Shimomura, M.; Fukui, K.; Urano, S. Pyrroloquinoline quinone (PQQ) prevents cognitive deficit caused by oxidative stress in rats. J. Clin. Biochem. Nutr. 2008, 42, 29-34.
(23) Takatsu, H.; Owada, K.; Abe, K.; Nakano, M.; Urano, S. Effect of vitamin E on learning and memory deficit in aged rats. J. Nutr. Sci. Vitaminol. 2009, 55, 389-393.
(24) Mukai, K.; Kageyama, Y.; Ishida, T.; Fukuda, K. Synthesis and kinetic study of antioxidant activity of new tocopherol (vitamin E) compounds. J. Org. Chem. 1989, 54, 552-556.
(25) Mukai, K.; Daifuku, K.; Okabe, K.; Tanigaki, T.; Inoue, K. Structure-activity relationship in the quenching reaction of singlet oxygen by tocopherol (vitamin E) derivatives and related phenols. Finding of linear correlation between the rates of quenching of singlet oxygen and scavenging of peroxyl and phenoxyl radicals in solution. J. Org. Chem. 1991, 56, 4188-4192.
(26) Mukai, K.; Tokunaga, A.; Itoh, S.; Kanesaki, Y.; Ohara, K.; Nagaoka, S.; Abe, K. Structure-activity relationship of the free-radicalscavenging reaction by vitamin $\mathrm{E}(\alpha-, \beta$-, γ-, δ-tocopherols) and ubiquinol-10: pH dependence of the reaction rates. J. Phys. Chem. B 2007, 111, 652-662.
(27) Mukai, K.; Ouchi, A.; Nakano, M. Kinetic study of the quenching reaction of singlet oxygen by pyrroloquinolinequinol $\left(\mathrm{PQQH}_{2}\right.$, a reduced form of pyrroloquinolinequinone) in micellar solution. J. Agric. Food Chem. 2011, 59, 1705-1712.
(28) Rieker, A.; Scheffler, K. Die beteiligung von phenylresten an der aroxylmesomerie. Liebigs Ann. Chem. 1965, 689, 78-92.
(29) Ouchi, A.; Nagaoka, S.; Mukai, K. Tunneling effect in regeneration reaction of vitamin E by ubiquinol. J. Phys. Chem. B 2010, 114, 6601-6607.
(30) Mukai, K.; Ouchi, A.; Mitarai, A.; Ohara, K.; Matsuoka, C. Formation and decay dynamics of vitamin E radical in the antioxidasnt reaction of vitamin E. Bull. Chem. Soc. Jpn. 2009, 82, 494-503.
(31) Parker, A. W.; Hester, R. E.; Phillips, D.; Umapathy, S. Timeresolved resonance raman spectroscopic investigations of the photochemistry of ubiquinone. J. Chem. Soc., Faraday Trans. 1992, 88, 2649-2653.
(32) Niki, E. Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biol. Med. 2010, 49, 503-515.
(33) Finley, J. W.; Kong, A.-N.; Hintze, K. J.; Jeffery, E. H.; Ji, L. L.; Lei, X. G. Antioxidants in foods: State of the science important to the food industry. J. Agric. Food Chem. 2011, 59, 6837-6846.
(34) Esterbauer, H.; Dieber-Rotheneder, M.; Striegl, G.; Waeg, G. Role of vitamin E in preventing the oxidation of low-density lipoprotein. Am. J. Clin. Nutr. 1991, 53, 314S-321S.
(35) Neuzil, J.; Thomas, S. R.; Stocker, R. Requirement for, promotion, or inhibition by α-tocopherol of radical induced initiation of plasma lipoprotein lipid peroxidation. Free Radical Biol. Med. 1997, 22, 57-71.
(36) Terao, J.; Matsushita, S. The peroxidizing effect of α-tocopherol on autoxidation of methyl linoleate in bulk phase. Lipids 1986, 21, 255-260.
(37) Bowry, V. W.; Stocker, R. Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J. Am. Chem. Soc. 1993, 115, 60296044.
(38) Mukai, K.; Noborio, S.; Nagaoka, S. Why is the order reversed? Peroxyl-scavenging activity and fats-and-oils protecting activity of vitamin E. Int. J. Chem. Kinet. 2005, 37, 605-610.
(39) Ouchi, A.; Ishikura, M.; Konishi, K.; Nagaoka, S.; Mukai, K. Kinetic study of the prooxidant effect of α-tocopherol. Hydrogen
abstraction from lipids by α-tocopheroxyl radical. Lipids 2009, 44, 935-943.
(40) Ernster, L.; Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1995, 1271, 195-204.
(41) Coenzyme Q: Molecular mechanisms in health and disease; Kagan, V. E., Quinn, P. J., Eds.; CRC Press: Boca Raton, FL, 2001.
(42) Naumov, V. V.; Khrapova, N. G. Study of the interaction of ubiquinone and ubiquinol with peroxide radicals by the chemiluminescent method. Biophysics (Engl. Transl. Biofizika) 1983, 28, 774780.
(43) Mukai, K.; Kikuchi, S.; Urano, S. Stopped-flow kinetic study of the regeneration reaction of tocopheroxyl radical by reduced ubiquinone-10 in solution. Biochim. Biophys. Acta 1990, 1035, 77-82.
(44) Barclay, L. R. C.; Vinqvist, M. R.; Mukai, K.; Itoh, S.; Morimoto, H. Chain-breaking phenolic antioxidants: Steric and electronic effects in polyalkylchromanols, tocopherol analogs, hydroquinones, and superior antioxidants of the polyalkylbenzochromanol and naphthofuran class. J. Org. Chem. 1993, 58, 7416-7420.
(45) Packer, J. E.; Slater, T. F.; Willson, R. L. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 1979, 278, 737-738.
(46) Mukai, K.; Nishimura, M.; Kikuchi, S. Stopped-flow investigation of the reaction of vitamin C with tocopheroxyl radical in aqueous Triton X-100 micellar solutions. J. Biol. Chem. 1991, 266, 274-278.
(47) Bisby, R. H.; Parker, A. W. Reaction of ascorbate with the α tocopheroxyl radical in micellar and bilayer membrane systems. Arch. Biochem. Biophys. 1995, 317, 170-178.
(48) Mitani, S.; Ouchi, A.; Watanabe, E.; Kanesaki, Y.; Nagaoka, S.; Mukai, K. Stopped-flow kinetic study of the aroxyl radical-scavenging action of catechins and vitamin C in ethanol and micellar solutions. J. Agric. Food Chem. 2008, 56, 4406-4417.
(49) Mukai, K.; Mitani, S.; Ohara, K.; Nagaoka, S. Structure-activity relationship of the tocopherol-regeneration reaction by catechins. Free Radical Biol. Med. 2005, 38, 1243-1256.
(50) Podda, M.; Weber, C.; Traber, M. G.; Packer, L. Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones. J. Lipid Res. 1996, 37, 893-901.
(51) Lass, A.; Foster, M. J.; Sohal, R. S. Effects of coenzyme Q_{10} and α-tocopherol administration on their tissue levels in the mouse: Elevation of mitochondrial α-tocopherol by coenzyme Q_{10}. Free Radical Biol. Med. 1999, 26, 1375-1382.
(52) Colome, C.; Artuch, R.; Vilaseca, M.-A.; Sierra, C.; Brandi, N.; Lambruschini, N.; Cambra, F. J.; Campistol, J. Lipophilic antioxidants in patients with phenylketonuria. Am. J. Clin. Nutr. 2003, 77, 185-188. (53) Homma, Y.; Kondo, Y.; Kaneko, M.; Kitamura, T.; Nyou, W. T.; Yanagisawa, M.; Yamamoto, Y.; Kakizoe, T. Promotion of carcinogenesis and oxidative stress by dietary cholesterol in rat prostate. Carcinogenesis 2004, 25, 1011-1014.
(54) Niki, E.; Saito, T.; Kawakami, A.; Kamiya, Y. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J. Biol. Chem. 1984, 259, 4177-4128.
(55) Mukai, K.; Ouchi, A.; Nakaya, S.; Nagaoka, S. Aroxyl-radicalscavenging rate increases remarkably under the coexistence of α tocopherol and ubiquinol-10 (or vitamin C): Finding of synergistic effect on the reaction rate. J. Phys. Chem. B 2013, 117, 8378-8391.
(56) Van der Meer, R. A.; Groen, B. W.; van Kleef, M. A. G.; Frank, J.; Jongejan, J. A.; Duine, J. A. Isolation, preparation, and assay of pyrroloquinoline quinone. Methods Enzymol. 1990, 188, 260-283.

[^0]: Received: September 10, 2013
 Revised: October 30, 2013
 Accepted: October 31, 2013
 Published: October 31, 2013

